浏览次数:402 发布时间:2024-01-26 09:48:59
导读
与行业突飞猛进相伴随的是人工智能治理的水涨船高。有预测认为,2024年,全球或将迎来人工智能立法潮。然而,作为大模型行业的发展前沿、标杆企业的集聚地,美国在人工智能的发展与治理方面,始终不为外界所干扰,发展战略稳定、治理策略渐进,两者既统一于大的共识之下,又在各自轨道按照各自的逻辑演进,透出一股独立、安静的力量。梳理美国人工智能发展战略的布局、特征,总结其治理策略的面向、趋势,或对我国生成式人工智能治理,以及广义人工智能整体治理框架建设,有一定的启示与镜鉴效应。
一、美人工智能发展战略布局呈“三高”特征:高政策延续性、高含AI量的政府、高依赖市场的场景拓展
(一)AI战略呈延续、渐进、增强特征,未受政党竞争、社会极化的显著影响
2019年,特朗普政府签发行政令《保持美国在人工智能领域的领导地位》(EO13859),提出美国人工智能倡议(American AI Initiative);同年,NSTC发布新版《国家人工智能研发战略计划》,在2016版七大战略基础上,新增“扩大公私合作伙伴关系”战略;此外,美国家标准及技术研究所(NIST)同年发布了《美国AI领导力:联邦参与开发技术标准和相关工具的计划》,提出AI标准建设方案。
2023年,拜登政府签发行政令《安全、可靠和可信开发和使用人工智能》(EO14110),围绕安全、 创新与竞争、工人支持、防止偏见和保护公民权利、消费者保护、隐私、联邦政府用AI以及国际领导等8个领域,责成50多个联邦机构执行超百项具体任务,并创建由28个联邦部门和机构负责人组成的白宫人工智能委员会。同年,NSTC再度更新《国家人工智能研发战略计划》,以 “协调和集中联邦政府在人工智能领域的研发投资”,NIST则发布首个《人工智能风险管理框架》,风险治理标准建设取得进展。
不难看出:美三任政府的AI战略,呈现出显著的延续、渐进特征,形成了“总统发布战略、NSTC布局发展、NIST主责标准”的稳定框架,战略方面始终拥抱AI,发展部署落深落实,标准建设从无到有。这一框架的稳定性,并没有因为党派更迭,或生成式人工智能新浪潮所带来的人工智能发展范式变化而变化。
(二)联邦政府主动学AI、懂AI、用AI,自我提升政府的“含AI量”
以特朗普2019年EO13859为例,其责令管理和预算办公室(Office of Management and Budget,简称OMB)发布指导备忘录,以帮助联邦机构订立策略,减少使用AI技术的障碍,以促进其创新应用。同年,特朗普还专题围绕“政府中AI应用”举行峰会(The Summit on Artificial Intelligence in Government),分享通过AI中心促进合作以及培训劳动力方面的经验。2023年拜登的14110号行政令,同样旗帜鲜明地提出,要大力推进联邦政府用AI,要求OMB建立联邦政府AI使用指南,各内阁部门设首席AI官,并提升联邦政府内AI人才密度。
历史地看,2010年前后,美联邦政府主动上云,对美企数字化转型以及美云服务全球扩张起到关键助推作用——这一政府先用带动市场使用的模式,正在AI时代重现。其意义在于:政府学AI、懂AI、用AI,实际是在用联邦信用为产品的安全性和质量背书,借此降低市场顾虑和消费者担忧,长远看对美私营部门多场景部署AI、消费者更主动地使用AI,将产生助推效应。
(三)人工智能应用场景拓展主要依赖市场,政府引导干预限于“最小必要”,专注“盲区补位”
2019年6月,NSTC发布的新版《国家人工智能研发战略计划》明确,联邦资助的人工智能研究,“要重点关注有重大社会效应但产业不太可能涉及的领域”,如“用于公共卫生、城市系统和智能社区的AI领域,以及涉及社会福利、刑事司法、环境可持续发展和国家安全相关的领域”。这实际是对AI战略落地进行分层,即“市场的归市场”,政府只集中关注市场容易忽略且同时具有强外部性的领域。
2023年10月,拜登第14110号行政令显著延续了此一战略方向选择:第6条“工人支持”中(C)款,要“打造一批AI时代的适格人力资源”,要求教培资源向与AI相关的人力发展计划倾斜;第7条“推进平等与公民权利”,要求防止刑事司法系统中AI歧视,执法队伍中要增加懂机器学习、软件和基础工程、数据隐私相关技术专家;第8条“保护消费者、病患、乘客与学生”,给出联邦政府对于AI在消费、公共卫生、公共交通、教育等场景的应用标准。上述6-8条,看似是在谈不同场景下(劳工、司法、病患、学术、乘客等)联邦部署AI的规则,其暗含的两大前提是:首先,联邦政府坚信,上述场景需要AI,这是以治理之名行产业引导之实;其次,上述领域,更多需要政府而非市场予以人力、资金、技术能力投入。
二、美人工智能治理呈融合型、渐进性特征,行政治理为先,软法约束为主,对刚性立法形成了塑造和牵制效应
(一)治理内涵脱胎于数据、网络治理,治理外延逐步扩张,体现出“技术+社会”融合型治理特征
人工智能治理自其初开始,便展露出对于数据、网络治理的整合效应。我国生成式人工智能治理思路,以前序网络安全、数据安全、个人信息保护以及算法相关规制作为基础,相类似地,美2016年《为人工智能的未来做好准备》,也是基于过往有关大数据和算法系统的论述整合而成。但与此同时,报告也敏锐觉察出自动化决策系统适用于某些场景下可能衍生出的负外部性,提出了公平、安全等关切,包括对技术产品施用于弱势群体影响的关注,治理的外延显著扩张。
出于党派属性和个人风格限制,特朗普任内的AI战略,更偏促产业发展和展示全球领导力,在标准建设方面迈出关键一步,但与社会治理相关的外延扩张性边际收缩。
时至拜登任内,拜登中产阶级经济学主张叠加生成式人工智能新浪潮带来的现实挑战,AI治理的外延迅速扩张:2022年10月,白宫发布《人工智能权利法案的蓝图》,提出“自动化系统要为美国人民工作”,列出“安全性和有效性、防止算法歧视、数据隐私、通知和解释以及人类参与决策”等五项指导设计、使用、部署原则。2023年2月,拜登《促进种族平等并通过联邦政府支持服务不足的社区》行政令,亦含括“指示联邦机构根除在设计和使用新技术(包括人工智能)方面的偏见,保护公众免受算法歧视的影响”条款。2023年10月,拜登14110号行政令因其标题中有“安全”字样以及颁行恰逢英国布莱切利AI安全峰会举办,一度被解读为美国AI治理方向的转变——实则不然,其安全部分只集中于第一章节,后续七章均聚焦产业创新以及AI部署使用中的工人支持、弱势群体保护等社会治理视角。
可以预见,随着AI技术应用场景的拓展,未来民主党政府任内,美AI治理中与社会相关的议题将持续扩张,包括但不限于种族平等、性别平等、区域均衡、教育与就业机会公平等等,重点是防范AI对于民主价值的破坏,确保高敏场景下AI系统决策公平,防范其对于公民隐私和人权带来伤害。
(二)行政部门以“最佳实践”、“标准指南”等软法开展渐进式治理,对刚性立法形成“塑造+牵制”的双向效应
塑造效应体现在,国会部分立法提案,实际是对行政部门主张的立法确认。例如,前述2019年特朗普的13859号行政令,提出“美国人工智能倡议”,而同年国会通过的《2020年国家AI倡议法案》(National AI Initiative Act of 2020),要求扩大人工智能的研发,协调国防/情报界与民用联邦机构之间的人工智能研发活动,实际是对行政令的确认性回应。再如,2022年10月国会通过的《人工智能培训法案》(AI Training Act),也是对三任政府有关提升联邦政府内部AI人才密度方案的立法确认。又如,2023年11月,参议员Mark R. Warner & Jerry Moran提出的《联邦人工智能风险管理法案》(S.3205),要求NIST为联邦人工智能技术的开发、采购和利用提供测试和评估能力,实际是对2023年1月NIST首个AI风险治理框架的立法确认,Jerry Moran提案时还特意强调,“NIST制定的合理准则已在私营部门得到应用”——这充分体现了“从行业实践到行政指引再到立法确认”的美式监管思路。
牵制效应则体现在,凝聚高度共识的软法主张,能够对激进立法构成有效约束。以特朗普2019年EO13859为例,其虽也提及保护公民自由、隐私、美国价值观以及美国经济和国家安全等要求,但OMB遵照该行政令制定的备忘录,被认为“相当宽容”(fairly permissive),该备忘录甚至还警告 “避免对AI系统的(安全性)求全责备”(avoid a precautionary approach that holds AI systems to an impossibly high standard)。2023年以来,生成式人工智能新浪潮下,行政部门与产业间的密切互动、标准互通,极大了缓解了国会的监管焦虑,稳定了立法监管预期,抑制了联邦层面的立法冲动。
三、随着产业向纵深发展,立法、执法、司法以“回应性+调试性”为基准,形成一种分布式治理模态
(一)分布式立法:出于“先见性”与“必要性”顾虑,美不太可能效仿欧盟针对人工智能予以专门立法,而倾向于调试现有法律对AI时代的适用性
广开听证、高频提案,但立法的姿态依然保守、轻度,其逻辑在于,立法认知很难超越产业发展实际,即“先见性”无法保障。回看过去,直到2020年以前,国会中涉人工智能相关立法,主要还是聚焦AI在自动驾驶和国家安全领域的应用——即便当时的《国家人工智能研发战略计划》等,早已将生成式人工智能研发规划置于显要的位置。过去几年,国会通过的所谓AI立法,只是对既有法律的简单修补,增加了AI元素,如《2018年美国联邦航空局再授权法案》增加“建议联邦航空局定期审查航空领域人工智能的状况,并采取必要措施应对新发展”。当下,生成式人工智能技术的迅速迭代以及应用的快速普及,既可能让类似的“修补”变得频繁、让“整体修补方案”的设计变得困难,在真实漏洞出现以前,并无法去假设补丁的大小、位置,又可能伴随技术的进步(如模型幻觉的消退)或应用路线的调整,让一些原先厘定的责任边界、安全机制面临调整,甚至沦为“不必要”。正是基于这一行业认知,当下美国会的所谓AI立法共识,只是将部分散点、有高度共识的议题做了立法语言的陈述,对于技术趋势和应用场景尚不够确定的通用人工智能系统,国会并没有进行一揽子系统干预的共识。
除去“先见性”赤字,“必要性”争议也是重要考量因素。国会承认生成式人工智能技术对于广义AI治理带来了新问题,但这一新问题“新在何处”、“传统监管工具还够不够用”,尚欠缺共识。OpenAI首席执行官Sam Altman在2023年5月国会听证时,曾列出“有害内容、虚假信息、政治偏袒、种族偏见、缺乏透明度、劳动者影响和知识产权盗窃”等监管议题,但类似议题并不新鲜,一些也是数字时代以来的老顽疾。以隐私立法为例,过去一年,部分被重新引入美国国会的隐私立法提案,开始纳入AI治理条款,如被寄予厚望的《美国数据隐私和保护法案》(American Data Privacy and Protection Act,简称ADPPA)对“涵盖算法”进行了定义,要求如使用“涵盖算法”可能对个人或群体造成伤害风险,需履行算法设计评估(algorithm design evaluation)义务。无独有偶,《消费者在线隐私权法案》(Consumer Online Privacy Rights Act,简称CDPRA)也提出将对 “算法决策”予以规范。然而,一个显见的悖论是:过去没有或较少受到AI因素干扰的情形下,联邦隐私立法尚且争议重重、举步维艰,如今纳入AI尤其是生成式人工智能系统规制考虑,立法恐怕没有理由会变得更容易。概言之,数字时代没有突破的治理障碍,智能时代恐怕更难突破,另立新法或许会将旧问题打包,但并不会解决旧问题。这决定了AI治理立法,还将以补丁式为主,呈分布式立法特征。
(二)分布式执法:不创设新的监管主体,不发明新的监管工具,立足增强既有监管主体,对旧工具予以挖潜
从监管主体看,美单独成立AI监管机构的可能性低。无论在全球层面还是全美范围内,产业侧出于防止监管碎片化考虑,都在呼吁建立专门的人工智能监管机构。2023年5月,参议员Michael Bennet和Peter Welch也曾提出《Digital Platform Commission Act of 2023》(S.1671),希望筹建数字平台委员会,但该委员会的职能设计与既有监管部门之间存在显著交叠,该法案被引入后也并未获得推动。我们判断,考虑到平台治理时代,有太多提案提出设立专职机构但均无果而终,加上过去几年,美联邦层面已经有了名义上的人工智能协调委员会(如拜登行政令要求28个联邦部门和机构负责人组成白宫人工智能委员会),且既有的AI应用场景和其负外部性,并未跳脱出传统监管框架,中短期内,美AI治理依然倾向于行业分布式治理,重点在于增强行业的监管能力和行业之间监管的协同性。
从监管工具看,执法部门中短期内将沿用既有工具。2023年4月,白宫召集下,美消费者金融保护局(CFPB)、司法部(DOJ)、联邦平等就业机会委员会(EEOC)和联邦贸易委员会(FTC)发布联合声明,指出自动决策系统(Automated Systems)可能导致金融、住房、就业领域出现偏见、歧视、不公平待遇现象,使消费者陷入不公平或欺骗的决策。这一四部门联合声明的核心,并非要对市场“大打出手”或开展所谓“执法风暴”,而是强调“现有的法律应当适用于自动化系统和创新技术的使用”。其中,与消费者权益保护最为密切的FTC还特别声明:人工智能不能免于现行的消费者保护、歧视、就业和竞争法;1970年《公平信用报告法》(Fair Credit Reporting Act)和1974年《平等信用机会法》(Equal Credit Opportunity Act)“都适用于自动化决策”;部门法《联邦贸易委员会法案》(Federal Trade Commission Act》第5条中“禁止不公平或欺骗行为”理当适用于AI和机器学习系统——这与其说是FTC对于市场的“宣战”,不如说是FTC在为新形势下开展监管寻找合理依据。
需要说明的是,执法部门认为既有监管工具适用于AI时代、上位法依据充分,并不意味着执法部门不希望有更多的工具,以及得到更强的授权支撑。从美过往平台治理尤其是反垄断治理的经验看,既有机构通过存量立法来监管新业态,执法中的确会遭遇挑战,执法部门也往往会呼吁国会立法来增加授权或做相应解释。微妙之处在于,除非国会达成一致,形成新的立法授权,否则行政执法就只能仰仗对既有法律政策工具的挖潜——这会让立法监管与行政监管之间,达成了某种平衡,或者说“僵持”。极端情况下,为打破这一平衡与僵持,问题可能会被甩给司法,而更多场景下,这一平衡与僵持,将为各方观察监管的必要性,尤其是考量行业发展与社会福祉之间的平衡关系,留出空间。
(三)分布式司法:司法将维持低频、审慎姿态,在内容责任、版权领域,短期内难以形成颠覆性判例
人工智能时代的内容责任争端,也大概率不会上升到司法层面。立法侧,参议员Josh Hawly & Blumenthal等主张人工智能生成内容不应享受《通讯规范法》第230条所赋予的豁免权。我们判断这一立法恐难落地:一方面,行业对于AI时代“尽职免责”中尽职义务的提升,实际持开放态度,即生成式人工智能系统应用终端,理论上是应当要比传统平台,去承担更多的内容输出责任。基于这一共识,另立法去剥夺生成式人工智能系统部署中的尽职免责义务,似乎并不必要。另一方面,与选举相关的内容责任,最受党派关注,2023年5月,参众两院曾分别引入对应法案《REAL Political Advertisements Act》(HR 3044/S.1596),希望修正1971年《联邦选举法》,以确保平台透明、负责任地在竞选广告中使用生成式人工智能技术。2023年下半年以来,OpenAI等也为2024大选采取了防止滥用、提高透明度、提供权威信源等方式,这实际是对国会提案的承认,代表着共识的增强,并先行一步进行“小颗粒度”的义务落地,这反过来让立法剥夺变得不必要。
人工智能时代,司法判例要在版权争端上发挥“逆转”效应,或许也还需一段很长的路要走。去年12月,《纽约时报》在纽约南区地区法院起诉OpenAI和微软,称其版权侵权、商誉损害、商标淡化,要求赔偿损失,永久禁止使用《纽约时报》受版权保护内容并删除包含版权内容的模型。我们判断,类似案件发生在两大商业主体之间,缺乏党派等重要政治力量的介入和博弈,且幕后商业谈判的确存在只是细节不得而知,不排除最终通过商业谈判达成和解的可能性,其最终引发重大司法判例的概率并不大。司法在类似场景下,更多被作为一种工具而使用。相类似的,以OpenAI和谷歌为代表的生成式人工智能行业领袖,当前并不寻求对既有著作权法的重大变更,在立法不变的情况下,如AI画作《空间歌剧院》版权登记失败、 “Thaler v. Perlmutter”案中美国版权局对于AI作品版权登记的驳回,以及版权法仅保护人类创作作品的主张,都很难受到司法的挑战。将缺乏人类参与的人工智能系统生成物登记版权,仍只是一个待讨论的学术话题。
结语
——END——